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DIFFERENTIAL GEOMETRY BASED CONTINUATION ALGORITHMS FOR 
SEPARATION PROCESS APPLICATIONS 

W.L. Rion and V. Van Brunt 
Department of Chemical Engineering 
University of South Carolina 
Columbia, S.C. 29208 

ABSTRACT 

Nonlinear representation of equilibrium 
phenomena in azeotropic distillation, 
extractive distillation and liquid extraction 
has been shown to result in simulations that 
have as many as three concentration and 
temperature profiles that meet the same process 
specifications. Continuation algorithms are 
the only assured technique of indicating this 
multiplicity and solving these highly nonlinear 
problems. Unfortunately, the robustness of 
solution is accompanied by increased 
computation. New procedures that increase the 
efficiency of these algorithms are documented 
in this paper. 

during the continuation procedure to provide a 
more accurate prediction of the solution 
trajectory. A rigorous method is documented 
for accurate prediction of the unit tangent, 
principal unit normal, and the curvature of the 
solution path. The resulting computational 
procedure is significantly more efficient than 
other continuation methods. It is shown that 
the effects of increased accuracy of prediction 
are threefold. The number of a) continuation 
steps, b)newton corrections to return to the 
solution path, and c)trajectory prediction 
failures are all reduced. 

Local differential geometry is exploited 
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2074 RION AND VAN BRUNT 

When the new algorithm is applied to 
separation problems involving complex 
thermodynamic subroutines, evaluation of the 
system equations represents the major portion 
of the computation time. Numerical computation 
of the second order partial derivatives 
required for the new algorithm requires 
increased function evaluations. This leads to 
increased CPU times for large or complex 
systems. However a quadratic spline 
approximation to the homotopy path provides an 
approximation to the differential geometry of 
the problem that allows the continuation 
process to proceed without function evaluations 
during the prediction phase. This results in a 
significant reduction in function evaluations 
and computation time required for large or 
complex separation problems. 

procedure. 
Several examples illustrate the new 

INTRODUCTION 

In previous research, continuation algorithms have 
shown multiplicity of concentration profiles for 
simulation of separation processes. Wayburn and Seader 
(1) showed that solution multiplicity could be seen in 
inter-linked systems with ideal liquid solution 
behavior. Kovach and Seider (2) showed that 
multiplicity of solution could occur in alcohol 
dehydration columns. 
isopropanol-water, and sec.buty1 alcohol-water systems 
and observed solution multiplicity. In these systems 
the non-ideal liquid model used, e.g. UNIQUAC, is 
thought to provide the solution multiplicity. 
second paper, Kovach and Seider (3) showed that 
simulation results, that could only be obtained by 
continuation methods, accurately predicted experimental 
column performance. They noted that the simulation 
results were extremely dependent on the thermodynamic 
model used and the values of the interaction parameters 

In this paper a superior continuation method is 
documented. Based on differential geometry, the new 
method can reduce the number of prediction steps or 
function evaluations used to follow the solution 
trajectory. A comparison with the method of Frantz and 
Van Brunt (4) is presented. The new algorithm is used 
to determine the binodal curve for a liquid-liquid 

They evaluated the ethanol-water, 

In a 
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DIFFERENTIAL GEOMETRY CONTINUATION 2075 

system with difficult solution behavior. A thorough 
analysis of the solution multiplicity of ethanol 
dehydration is presented. The theoretical results 
predict column behavior as a continuous function of 
energy input to the reboiler. 

DIFFERENTIAL GEOMETRY-BASED HOMOTOPY CONTINU ATION 

The classical Frenet frame analysis used to 
describe the intrinsic geometry of curves in three- 
dimensional Euclidean space can be generalized to N- 
dimensional Euclidean vector space as described in Rion 
and Van Brunt (5). The continuation procedure presented 
by Frantz and Van Brunt (4) utilized the local 
continuation variable technique of Rheinboldt and 
Burkardt (6) to compute the tangent vector, TI of the 
homotopy path Frenet frame for the predictor of the 
algorithm. In the differential geometry based procedure 
the principal unit normal vector, N, and the curvature, 
K, are also computed during the prediction phase of the 
algorithm. K and N are incorporated into the predictor 
to account for the curvature of the solution path. The 
curvature also provides a natural means of step-length 
determination. 

ADDlication of the Differential Geometrv-Based Procedure 
to SeDaration Problems 

Calculation of the curvature and principal unit 
normal for the system H(X,t)=O (formed by transformation 
of the original system equations F(X) by the homotopy 
H(X,t)) is described in detail in Rion and Van Brunt 
(5) * 

Numerical computation of the partial derivatives 

For these problems a quadratic spline 

required in the Rion and Van Brunt algorithm (5) can be 
costly in terms of CPU time for large or highly complex 
systems. 
approximation to the solution arc provides an adequate 
approximation to the differential geometry of the 
homotopy path without the need of computationally 
expensive function evaluations. A quadratic spline of 
the form : 

xi,j+, = xi , J  . + aj(sj+,-sj) + bj(sj+,-sj) 
is formulated around the three most recent points on the 
homotopy path (which are stored as three, single 
subscripted, vector arrays.) Each system variable is 
considered as a continuous homogeneous function of 
arclength. By requiring continuity of the spline and 
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2076 RION AND VAN BRUNT 

linearity of first derivatives, the spline yields the 
following approximation to the second derivatives with 
respect to arclength. 

d2xi/ds2 = 2(i,2(1/dz(dl+d2) + 1/d:) - 2(i,l(l/dl (dl+d,) 

where 

= xi,j.l - ; i=1,# system variables 
ti,, = Xi,j - Xi.j-1 i=1,# system variables 
d1 = ~j-r-sj-2 
d, = s ~ - s ~ - ~  

The arclength at each step, j, is estimated by: 
nv 

i=l 
sj = Sj-1 + ["(Xi,j - xi,j-1)21'12 I 

where nv equals the number of variables in the homotopy 
equations. 

The 

K -  

and 

curvature is given by: 

the principal unit normal is found by normalizing 
d2X/ds2 ; 

ni = d2xi/ds2 / K . 
backwards difference approximation to the unit tangent 
accompanied by a spline based approximation of the 
principal unit normal and curvature resulted in a more 
accurate predictor than that using the spline 
approximation to the unit tangent and principal normal 
vectors. Thus after the curvature and principal unit 
normal were calculated as shown above the components of 
the unit tangent were given simply by: 

Numerical experimentation showed that a simple 

dxi/ds = (xi,j - xi,j-1)/(sj-sj-1) 
Incorporation of the curvature and principal unit normal 
into the predictor and step-length procedures is 
discussed in detail in Rion and Van Brunt ( 5 ) .  
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DIFFERENTIAL GEOMETRY CONTINUATION 2077 

The algorithm incorporating the solution curvature 
into the predictor and step-length w a s  compared to the 
algorithm of Frantz and Van Brunt on the highly non- 
linear test problem from Kubicek et al. (7) involving 
two continuous, non-adiabatic, stirred tank reactors in 
series, at steady state, with recycle, and an 
exothermic, first-order, irreversible reaction. The 
equations describing this system from Kubicek (8) are: 

fl=O= (1-R) (l-Yl)exP(lO@1/ (1+10@1/A) 1 - Y1 
f,=O= (l-R)D(1-Y1) exP(lO@i/ (1+10@1/A) 1 -1o(l+P1)@1 + P1@,1 
f3=O= y1 - Y, + (1-R) (l-y,) exp( lo@,/ (1+1O@,/A) 1 

f,=O= l0ql - 10 ( 1 + P 2 )  @2 + (1-R) D( l-y2) exp( lo@,/ (l+lO@,/A) ) 

The independent variables in these equations are: 

yi = reactant conversion in reactor i= 1 or 2, 
@i = dimensionless temperature in reactor i- 1 or 2, 
R = recycle ratio, R€(O,l]. 

The physical parameters in the above equations are 
defined as follows: 

+ P2@c2 

A = dimensionless activation energy, A ~ [ l O , o o ) ,  
D = dimensionless adiabatic temperature rise, D~[0,60], 
9, = dimensionless coolant temperature, @,~[-5,2], 
pi = dimensionless heat transfer coefficient reactor i, 

In this example, A=1000 , D=22 , @cl=@c2=0 , p1=p2=2 , R=0+1. 

temperature, vs recycle rate, R. Solution of this 
set of equations is very difficult due to strong 
attraction to a divergent path with negative recycle 
coordinates. 

8$[0,31- 

One desired solution diagram is that of reactor # 2 

Figure 1 compares of the progress along the 
solution path of the Frantz and Van Brunt algorithm and 
the curvature-based algorithm for this problem. Figure 
1 and the accompanying Table 1 show that the curvature- 
based algorithm required less continuation steps, less 
Newton corrections, and encountered less correction 
failures due to poorly chosen step sizes while tracing 
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2078 RION AND VAN BRUNT 

the solution path. The number of function evaluations 
was decreased using analytic derivatives while function 
evaluations increased when using numerical partial 
derivatives. CPU time was reduced in both cases, but 
more when using analytical partial derivatives. 

INTERLINKED CSTR'S 

Reactor 2 Temperature 

O.* ~ 

0.6 

0.4 

0.3 

- 

- 

Pe 

P 0.2 - p4 

0.036 0.866 0.875 0.806 

WR),  R = Recycle Rate 

0 Frantz and Van Brunt A CurVatUra BaDad 

* b l l n a  

Figure 1. Solution progress comparison for 

interlinked CSTR'a 

Table 1. Solution comparison of interlinked CSTR 
problem. 

tz and Van Brun t Alaoritb Curvatur e Bas ed Ala orithm 
Derivatives Numeric Analytic Numeric Analytic Spline 
# Steps 29 29 24 24 34 

# Failures 19 19 10 10 19 

# Jacobians 114 114 87 87 99 

# Correctors 60 60 49 49 72 

# Functions 718 148 1173 112 667 

CPU Time (ms) 783 667 740 590 880 
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DIFFERENTIAL GEOMETRY CONTINUATION 2079 

Note that the comparisons above were made by 
relaxing step-length control parameters until algorithm 
failure occurred and recording the best performance 
statistics observed. This occurred at the same set of 
parameters for the Frantz and Van Brunt algorithm and 
the non-spline based curvature algorithm. The step- 
length control parameters for the spline based algorithm 
could not be relaxed to the extent of those of the 
rigorous algorithm without algorithm failure. 
Performance of the spline based algorithm at slightly 
tighter step-length control parameters is shown in Table 
1 also. Note that the tighter step-length control 
results in more steps and corrections taken. The step- 
length control based on the curvature as determined by 
the spline is adequate. The spline requires less 
function evaluations than the Frantz and Van Brunt 
algorithm using numerical derivatives. 

Conmarison of Ala orithms for Determination of a Liauid- 
Liuuid Phase EnveloDe 

The next example is from Kovach and Seider (2). In 
this problem the binodal curve for the three component 
system di-secondary butyl ether (DSBE), secondary butyl 
alcohol (SBA), and water is the desired homotopy path. 
The activity coefficients are calculated with UNIQUAC 
using the interaction parameters of Prausnitz, et al. 
(9). The binodal curve cannot be generated by use of a 
standard Newton procedure. The binodal curve can be 
generated by using a Newton homotopy on the feed 
composition to an isothermal equilibrium stage. The 
equilibrium concentrations exiting the stage form the 
two phase envelope as the feed composition varies 
between two known pairs of binary equilibrium 
concentrations. The homotopy equations used are shown 
below: 

1 2 - 1, - 1, 
- 1, + t(131)e - 1, + t(1:)' 
71, 

- 12; + t(121)e - 12; + t(l$ 
2 

The ath is initiated with the binary streams (lil)a 
and (li2) , which are equilibrium streams from an initial 
feed stream, (lF)", containing only DSBE and water. The 
path terminates at the feed st.ream (lF)b and its 
associated equilibrium streams which contain only SBA 
and water. As the imbedded parameter varies from 1 to 0 
the feed stream composition varies continuously between 

v 
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2080 RION AND VAN BRUNT 

streams (lF)" qnd (lF)b. 
the streams li 
constraints H4-H6, and determine points on the binodal 
curve. The resulting binodal curve is shown in Figure 
2. The figure also shows the relative progress of the 
Frantz and Van Brunt algorithm compared to the 
curvature-based algorithm. 
the two algorithms is shown in Table 2. 

As the feed composition varies, 
and li2 satisfy the equilibrium 

A performance comparison of 

BINODAL CURVE 
SBA-DSBE-WATER 

SBA 
1 

0.0 

0.6 

0.4 

0.2 

a 

0 Frantz d Van Brunt Curvature Based * Spline 

\ 

0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.0 0.9 1 
DSBE WATER 

Figure 2. Solut ion progress comparison for 
SBA-DSBE-water binodal curve. 
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Table 2. Solution Comparison for SBA, DSBE, and water 
binodal curve. 

Frantz and Van Brunt Alaorithm Curvature Based Alaorithm 
Derivatives Numeric Numeric spline 
# Steps 14 12 18 
# Correctors 41 30 47 
# Failures 10 6 5 

# Jacobians 67 51 57 
# Functions 547 1213 471 

CPU Time (ms) 1610 2750 1510 

As before the progress of the curvature-based algorithm 
is greater at each continuation step. 
correctors and step-length failures are encountered. 
(Only numerical derivatives were used for this system.) 
Due to the complexity of the system equations the 
increased function evaluations associated with the 
curvature-based algorithm lead to increased CPU time 
However the spline based algorithm required less 
function evaluations than the Frantz and Van Brunt 
algorithm, with less CPU time. As before, more steps 
and corrections were required for the spline based 
algorithm due to the required tightening of the step- 
length control parameters. 

Less Newton 

ETHANOL DEHYDRATION 

An azeotropic system which has received a large 
amount of interest is the dehydration of ethanol using 
benzene. The classical azeotropic distillation 
concentration profiles for this system were first 
reported by Robinson and Gilliland (10). Magnussen et 
al. (11) found three different steady states satisfying 
the same column specifications for this system using 
UNIQUAC and constant rnolal overflow in a 27 tray tower. 
Prokopakis and Seider (12) reported the presence of 
three different operating regimes with very similar 
column specifications using the UNIQUAC thermodynamic 
model with inclusion of the stage energy balances and a 
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2082 RION AND VAN BRUNT 

distillate decanter. Their numerical results were 
obtained using Powell's method (13). Kovach and Seider 
(2) also investigated this system in a column with a 
fixed reflux stream and no decanter. Using homotopy 
continuation they found five steady state solutions with 
almost exactly the same specifications. Another, more 
detailed, analysis of this system using Newton-like 
methods was performed by Venkataraman and Lucia (14). 
They showed the presence of two turning points in a 
graph of product purity vs bottoms flowrate. Most 
recently, Rovaglio and Doherty (15) performed dynamic 
simulations of this column with a distillate decanter 
using a UNIQUAC based model that accounted for the 
possibility of heterogeneous liquid phases. Their work 
showed the presence of three steady states within a 
large range of reflux ratio. 

using homotopy continuation to further characterize the 
solution space. The curvature-based algorithm was used 
to generate the solutions to the MESH equations as a 
continuous function of reboiler duty by incorporation of 
the reboiler into a Newton homotopy. Two turning points 
were observed in the resulting continuation path giving 
a region where three very different steady state 
solutions exist for a specified reboiler duty. The 
solution progress and algorithm efficiencies are 
compared to that of the Frantz and Van Brunt algorithm. 

Here the above results are extended and amplified 

Column specifications for the dehydration of 
ethanol with benzene used in this study are shown in 
Figure 3. This configuration corresponds to that 
investigated by Kovach and Seider (2). The non-ideal 
liquid phase behavior is described by the UNIQUAC 
equation. The liquid phase is assumed homogeneous. 
Interaction parameters are the three-component parameter 
set of Prausnitz et al. (90). The gas phase is assumed 
to be ideal. The component vapor pressure equations are 
represented by the extended Antoine equation with the 
parameters of Gmehling and Onken (16). The component 
enthalpy equations are those of Reid et al. (17). 
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DIFFERENTIAL GEOMETRY CONTINUATION 

Reflux = 360.76 kmol/hr. 

Ethanol 301 5 
Benzene 5769 
Water .1216 

nnLfL Feed = 100 kmollhr. 

T=298K 

sat.llq. 

Ethanol .87 
Benzene .OO 
Water .13 

Figure 3. Speclflcatlons for the Ethanol Dehydration Tower 

The MESH equations for this column were formulated 
as shown below: 

where , 
i = species 1-3, 
j = stage number, 
fi,j = liquid feed of component i, to stage j, 
hi,j = liquid phase enthalpy, component i, stage j, 
H.. = vapor phase enthalpy, component i, stage j, 
h ;,j = feed liquid phase enthalpy, component i, stage j, f J  
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2084 RION AND VAN BRUNT 

li,j = component liquid molar flow rate, species i, 

vi,j = component vapor molar flow rate, species i, 

pi = pressure, stage j , 
yi,j-= activity coefficient, species if stage j, 
Qj - energy input to stage j. 

The variables associated with each stage were li,j, vi j ,  
and T. Q j  was equal to zero for all stages except the 
reboii'er. With the two feed streams and stage pressures 
in Figure 3 specified, the column has only one degree of 
freedom unspecified. In this work the reboiler duty, 
Q1, was used to fully specify the state of the column. 

generating the solutions to the MESH equations as a 
continuous function of reboiler duty. The MESH 
equations described above were supplemented by a Newton 
homotopy applied to the reboiler duty for use in the 
continuation algorithm: 

stage j , 
stage j, 

= component vapor pressure, species i, stage j, 

Homotopy continuation provides a means of rapidly 

QiRB t + QfRB (1-t) - Q1 = 0 ;  

where 

Q, =-rebqiler duty, 
Q R B  - initial reboiler duty on homotopy path, 
QfRB = final reboiler duty on homotopy path, 
t = imbedded parameter. 

A s  the imbedded parameter t is tracked from 0 to 1 by 
the continuation a1 orithm the reboiler duty varies 
continuously from Q R B  to Q R B .  
equations the state of the column can be continuously 
deformed by the reboiler duty. Since the Newton 
homotopy was applied only to the reboiler specification 
equation, each point on the solution path represented a 
physically realistic solution potentially generated by 
disturbances in reboiler duty. 

? Thus using these 

Simulation Results 

The total vapor boilup from the reboiler is shown 
as a continuous function of reboiler duty in Figure 4. 
The relative progress of the Frantz and Van Brunt and 
curvature-based algorithms is shown in Figure 5. A 
comparison of algorithm performances is shown in Table 
3. 
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DIFFERENTIAL GEOMETRY CONTINUATION 2085 

404 

402 

400 

398 

396 

VAPOR BOIL-UP (KMOL/HR) 
485 

- 

- 

- 

- 
1 2  

- 
26 

465 

445 

425 

405 

385 I I I I I I 

150 155 160 165 170 175 180 185 

REBOILER DUTY/100000 (KJ/HR) 

Figure 4. Vapor boil-up vs reboiler duty. 

394 ' I I I I I 

161 161.1 161.2 161.3 161.4 161.5 161.6 

REBOILER DUTY/100000 (KJ/HR) 

A CURVATURE BASED * SPLINE 0 FRANTZ 6 VAN BRUNT 

Figure 5. Solution progress comparison for 
ethanol dehydration tower. 
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RION AND VAN BRUNT 2086 

Table 3. Solution Performance Comparison for Ethanol 
Dehydration Tower. 

Frantz and Van Brunt Alsorithm Curvature Based Alcrorithm 
Derivatives Numeric Numeric Spline 
# Steps 19 16 29 
# Correctors 73 63 83 

# Functions 3409 16382 3160 
CPU Time (s) 734 3879 665 

# Failures 0 0 0 

The reduction in the number of continuation steps and 
correctors when using the curvature-based algorithm is 
consistent with the results on the earlier problems. 
However, with this complex system, the increased 
function evaluations associated with rigorous curvature- 
based algorithm leads to substantially increased CPU 
time. However the reduction in function evaluations 
associated with the spline based algorithm results in a 
reduction of CPU time. Thus the spline based algorithm 
becomes desirable for large or complex systems of 
equations associated with separation cascades. 

161.42 KJ(10-5)/HR) the solution path in Figure 4 goes 
through two sharp turning points, A and B, yielding a 
region in which three distinct solutions exist, with 
three different boilup rates, corresponding to the same 
energy input to the reboiler. The dotted line in Figure 
4 indicates a representative slice through this region. 
For this slice the three steady state solutions (labeled 
1, 2, and 3) corresponding to the same reboiler duty are 
shown in Figure 6. Figure 6 indicates that for the same 
reboiler duty the number of trays holding nearly pure 
ethanol may be a few, more than twenty, or none. At 
solutions 1 and 2 water is present in appreciable 
quantities on only the top few stages, benzene is 
present in significant amounts on sixteen or more 
stages, and pure, or nearly pure, alcohol is produced. 
In solution 3 water is present in significant amounts on 
all stages while benzene is confined to the top six 
stages. The bottoms concentration in solution 3 
corresponds to the ethanol water azeotrope. 

Within a very small range of reboiler duty (161.09- 
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1 

0.8 

0.6 

0.4 

0.2 

n " 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32  34 36 3 8  40 42 

TOP STAGE NUMBER BOTTOM 

Figure 6. Concentration profiles for Q R B 4  61.41 

Column concentration profiles corresponding to 
turning points A and B are shown in Figure 7. The 
concentration profiles at turning point A correspond to 
the classic azeotropic distillation profiles calculated 
by Robinson and Gilliland (10). The concentration 
profiles at turning point B correspond to the type I11 
solutions of Kovach and Seider (2). Solutions 
corresponding to type I, 11, IV, and V reported by 
Kovach and Seider (2) are all within close proximity of 
solutions 1 and 2. 

The solution path of the ethanol concentration in 
the bottom product stream is shown in Figure 8. 
Solutions 1, 2, and 3 and turning points A and B are 
indicated in the figure. The concentration of ethanol 
increases initially to almost pure ethanol as the 
reboiler duty is increased, but drops off sharply after 
turning point A. 
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0.8 - 

0.6 - 

0.4 - 

0.2 - 

0 
0 2 4 6 8 10 12 14 10 18 20 22 24 26 28 30 32 34 36 38 40 42 

TOP STAGE NUMBER 

points A and B. 

BOTTOM 

Figure 7. Concentration profiles at turning 

ETHANOL MOLE FRACTION 
1 
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Figlire 8. Ethanol concentration in product stream 
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The corresponding solution path for the column 
benzene inventory is shown in Figure 9. The benzene 
inventory decreases sharply at turning point A. 
is present in significant quantities on almost every 
stage for reboiler duties smaller than 161.42 (before 
turning point A) but is present on only a few stages at 
any larger reboiler duty. 
conditions are those corresponding to the portion of the 
path just before turning point A, where a high purity 
alcohol bottoms product is being produced. Thus Figure 
9 shows the importance of maintaining a high benzene 
inventory ( > 15 Kmol benzene/Kmol column liquid) in 
order to remain at a desirable operating state. 

Benzene 

The desired operating 

BENZENE INVENTORY ( k m o l l k m o l  a o l u m n  l i a u l d )  
20 

15 

10 
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0 
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6 -  

6 
150 155 160 165 170 175 180 185 

REBOILER DUTY/100000 (KJ/HR) 

Figure 9. Column benzene inventory vs 
reboiler duty 
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The loss of separation associated with a low 
benzene inventory is explained as follows: Benzene is 
more volatile than ethanol in the nearly binary mixture 
in the bottom of the stripping section. Thus as the 
reboiler duty is increased the number of trays at the 
bottom of the column holding nearly pure ethanol 
increases, pushing the benzene concentration front 
further up the stripping section of the column. 
a high benzene concentration must be present in the 
dehydration zone between the feed stage and the normal 
concentration fronts in the stripping section to 
maintain the relative volatility between ethanol and 
water needed for total dehydration. (aemw = 0.5 in the 
presence of benzene, a,-y ss 0.9 or higher without 
benzene). Thus as reboiler duty increases through 
turning point A, the benzene concentration front moves 
up the column, reducing the number of stages in the 
dehydration zone, and yielding an insufficient number of 
stages with adequate benzene concentration for 
dehydration to occur. 

The displacement of the benzene concentration front 
is accompanied by a displacement of the column 
temperature front. Figure 10 shows the temperature 
profiles corresponding to solutions 1,2, and 3, and to 
turning points A and B. Figure 10 shows that the 
temperature profile moves up the column as the benzene 
concentration profile moves up the column. As the 
temperature profile moves past a given stage in the 
stripping section, a temperature increase of about 11 
C is realized on the stage. Figure 11 shows how this 
temperature increase is related to the column benzene 
inventory. As the temperature on a typical stage (#15) 
in the stripping section increases from about 345 K to 
355 K the column benzene inventory decreases sharply, 
and thus the desired separation is lost. These findings 
suggest that perhaps the best way to control the ethanol 
dehydration column is to monitor the temperature on f o u r  
or five stages in the stripping section and adjust 
reboiler duty to maintain the temperature front between 
stage numbers eight and twenty. As shown in previous 
figures this would maintain a high benzene inventory and 
product purity. 

However 
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Figure 11. Stage # 15 temperature vs 
benzene inventory. 
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CONCLUSIONS 

An improved homotopy continuation algorithm has 
been developed by incorporation of differential geometry 
into the prediction and step-length phases of the 
algorithm of Frantz and Van Brunt (4). The new 
algorithm results in fewer continuation steps and Newton 
correctors to follow the homotopy path. The curvature- 
based step-length control is shown to be an improvement. 
For large or complex systems, such as azeotropic 
distillation columns, a quadratic spline approximation 
to the homotopy path provides a reasonable estimate of 
the differential geometry of the problem, and avoids 
computationally expensive function evaluations. This 
results in less function evaluations and reduced CPU 
time . 

The new algorithm can be used to generate the 
steady states of the dehydration of alcohol with benzene 
column of Kovach and Seider (2) as a continuous function 
of reboiler duty. Two turning points are seen in the 
resulting continuation path giving rise to a region of 
three steady states corresponding to the exact same 
column specifications. The importance of a high benzene 
inventory in the column to maintain the desired product 
purity is shown. Adjusting reboiler duty to maintain 
the column temperature front between specified stages 
provides a means of controlling and maintaining high 
benzene inventory and product purity. 

NOMENCLATURE 

A - Dimensionless activation energy. 
aj- spline fit constant at step j . 
bj- Spline fit constant at step j. 
D - Dimensionless adiabatic temperature rise. 
d, - S ~ . , - S . . ~ ;  difference in arclength between steps j-1 

& j-i. 
d, - s.-sj.,; difference in arclength between steps j-1 & 

f - Function. 
F - Function vector. 
fi - Liquid feed of component i, to stage j. 
hi:j - Liquid phase enthalpy, component i, stage j. 
H - Homotopy function vector. 
H.. - Vapor phase enthalpy, component i, stage j. $iij - Feed liquid phase enthalpy, component i, stage j. 
li,j - Component liquid molar flow rate, species i, stage 
n - Number o f  problem variables, dimension of F. 

j’. 

Curvature of homotopy path. 

j .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



DIFFERENTIAL GEOMETRY CONTINUATION 2093 

N - Unit normal vector of Frenet frame, N=C" (s)/ l lC" (s) 11.  
nj - Component j of principal unit normal vector. 
P. - Pressure, stage j . 
:iRB - Initial reboiler duty on homotopy path. 
QfRB - Final reboiler duty on homotopy path. 
R - Recycle ratio. 
s - Arclength of solution trajectory. 
t - Imbedded parameter. 
T - Unit tangent vector to homotopy curve. 
T~ - Temperature on stage j. 
vi,j - Component vapor molar flow rate, species i, 
x - Independent variable. 
X - Independent variable vector. 
yi - Reactant conversion in reactor i= 1 or 2. 
Greek 

ae-" - Relative volatility, ethanol to water. 
pi - Dimensionless heat transfer coefficient reactor i. 
yi,j  - Activity coefficient, species i, stage j. 
( i , l  - xi,j-l - xi .-* ; change in variable i, between steps 

3-2 61 j'i 
ti,* - xi . - xi .-, : change in variable i, between steps 

jil 61 j'. 
As - Step-length used during continuation step. 
@i - Dimensionless temperature in reactor i= 1 or 2. 
@, - Dimensionless coolant temperature. 
SuDerscriDts 

i - Initial value. 
f - Final value. 
1,2 - Designation of liquid phase in heterogeneous 
a,b - Feed stream designation. 
Subscripts 

i - Component or system variable. 
j - Stage subscript, or step number. 
n - Signifies nth parameter. 
RB - Reboiler. 

J - Component vapor pressure, species i, stage j. - Energy input to stage j. 

stage j. 

system. 
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